

Unit 2 : Basic Linux Commands

SR

NO.

NAME PAGE

NO

2.1 Directory Navigation Commands (pwd, cd, mkdir, rmdir, ls, tree) 2

2.2 File Management Commands (cat, rm, cp, mv, touch) 7

2.3 File Permissions and Ownership (chmod, chgrp, chown, umask) 12

2.4 Common System Commands (who, whoami, man, echo, date,

clear)

15

2.5 Common System Commands (who, whoami, man, echo, date,

clear)

16

2.6 Introduction to Process 22

2.7 Process Control commands : ps, fg, bg, kill, sleep 24

2.8 Job Scheduling commands : at, batch, crontab 29

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 2

TYBCA Sem-5

2.1 Directory Navigation Commands

The Linux file system is organized in a hierarchical (tree-like) structure, starting from the

root directory (/). Understanding how to move around and manage directories is crucial.

1. pwd (Print/Present/Current Working Directory)

Purpose: The pwd command is used to display the full, absolute path of the current

working directory (where you are currently located in the file system).

Syntax:

$ pwd

Output Example:

/home/user/documents

Key Point: This command is very useful when you get "lost" in the file system and

need to quickly know your current location.

2. cd (Change Directory)

• Purpose: The cd command is used to change your current working directory. It

allows you to move to different locations within the file system.

Syntax:

cd [directory_path]

Key Concepts:

o Absolute Path: A path that starts from the root directory (/). It provides the

complete address of a directory from the top of the file system.

▪ Example: cd /home/user/projects

o Relative Path: A path that is relative to your current working directory. It does

not start with /.

Common cd Usages:

o cd ~ or cd: Go to your home directory. This is the default directory for your

user when you log in.

o cd .. : Go up one level (One level Back) (to the parent directory).

o cd . : Stay in the current directory. (Not very useful on its own, but

conceptually important for relative paths).

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 3

TYBCA Sem-5

o cd - : Go to the previous directory you were in. Very handy for quickly

switching between two directories.

o cd / : Go to the root directory.

Examples:

pwd # Output: /home/youruser

cd documents # Change to 'documents' inside your home directory

pwd # Output: /home/youruser/documents

cd .. # Go up one level

pwd # Output: /home/youruser

cd /etc # Go to the absolute path /etc

pwd # Output: /etc

cd ~ # Go back to your home directory

pwd # Output: /home/youruser

3. mkdir (Make Directory)

Purpose: The mkdir command is used to create new directories (folders).

Syntax:

$ mkdir [options] directory_name(s)

Common Options:

o -p or --parents: Creates parent directories if they don't already exist. This is

very useful for creating nested directories in one go.

Examples:

mkdir my_new_folder # Creates 'my_new_folder' in the current directory

mkdir folder1 folder2 folder3 # Creates multiple directories at once

mkdir -p project/src/main/java # Creates 'project', then 'src' inside 'project', etc.

 # If 'project' doesn't exist, it will be created.

• Note: Directory names can contain spaces, but then they must be enclosed in quotes

(e.g., mkdir "my documents"). It's generally good practice to avoid spaces in directory

and file names in Linux.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 4

TYBCA Sem-5

4. rmdir (Remove Directory)

Purpose: The rmdir command is used to delete empty directories.

Syntax:

rmdir [options] directory_name(s)

• Important Note: rmdir will fail if the directory is not empty. If you need to remove

non-empty directories, you'll typically use rm -r (which will be covered in File

Management Commands).

Examples:

$ mkdir empty_folder # Create an empty folder

$ rmdir empty_folder # Successfully remove it

$ mkdir non_empty_folder

$ touch non_empty_folder/file.txt # Create a file inside it

$ rmdir non_empty_folder # This will fail with an error like:

5. ls (List Directory Contents)

Purpose: The ls command is used to list the contents of a directory. It shows files

and subdirectories within the specified (or current) directory.

Syntax:

ls [options] [directory_path]

• Common Options:

o -l: Long listing format. Shows detailed information (permissions, number of

links, owner, group, size, modification date, name).

o -a: All files. Shows hidden files (files starting with a .).

o -h: Human-readable sizes (with -l). Displays file sizes in K, M, G, etc.

o -r: Reverse order. Sorts in reverse order.

o -t: Sort by modification time, newest first.

o -R: Recursive listing. Lists contents of subdirectories as well.

o -F: Appends a character to entries to indicate their type (/ for directories, * for

executables, @ for symbolic links, etc.).

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 5

TYBCA Sem-5

Examples:

ls # Lists contents of the current directory

ls -l # Long listing of current directory

ls -a # Shows all files, including hidden ones

ls -lh # Long listing with human-readable sizes

ls -ltr # Long listing, sorted by time (newest last), reverse order

ls /etc # Lists contents of the /etc directory

ls -R my_project_dir # Lists contents of 'my_project_dir' and all its subdirectories

Output Interpretation (for ls -l):

-rw-r--r-- 1 user group 1024 Jul 7 10:30 myfile.txt

drwxr-xr-x 2 user group 4096 Jul 6 15:00 my_folder/

o First character (- or d): File type (- for regular file, d for directory, l for symbolic

link, etc.)

o Next 9 characters (rw-r--r--): File permissions (user, group, others)

o 1: Number of hard links

o user: Owner username

o group: Owner group

o 1024: File size in bytes

o Jul 7 10:30: Last modification date and time

o myfile.txt: File or directory name

6. tree

Purpose: The tree command lists the contents of directories in a tree-like format,

showing the hierarchical structure.

Syntax:

tree [options] [directory_path]

• Note: tree is often not installed by default on all Linux distributions. You might need

to install it using your distribution's package manager (e.g., sudo apt install tree on

Debian/Ubuntu, sudo yum install tree on RedHat/CentOS, sudo dnf install tree on

Fedora).

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 6

TYBCA Sem-5

• Common Options:

o -L level: Descends only level directories deep.

o -F: Appends a character to entries to indicate their type (similar to ls -F).

o -d: List directories only, not files.

o -a: All files (including hidden ones).

Examples:

tree # Displays the tree structure of the current directory

tree -L 2 # Displays 2 levels deep from the current directory

tree /home/user/documents # Displays the tree structure of a specific directory

tree -d # Shows only directories in the tree structure

Output Example:

├── project

│ ├── src

│ │ ├── main

│ │ │ └── App.java

│ │ └── test

│ │ └── AppTest.java

│ └── pom.xml

├── documents

│ ├── report.pdf

│ └── notes.txt

└── backup

 └── old_files/

4 directories, 5 files

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 7

TYBCA Sem-5

2.2 File Management Commands

These commands are fundamental for manipulating files within the Linux file system.

1. cat (Concatenate and Display Files)

• Purpose: The cat command has multiple uses, primarily to:

o Display the content of one or more text files to the standard output (your

terminal).

o Concatenate (combine) multiple files into a single output or a new file.

o Create a new file (though touch is more common for creating empty files, and

text editors for content) using ‘>’ sign.

o We can append the file…Using ‘>>’ Sign.

• Syntax:

cat [options] [file(s)]

• Common Options:

o -n or --number: Number all output lines.

o -b or --number-nonblank: Number non-blank output lines.

o -s or --squeeze-blank: Suppress repeated empty output lines.

• Examples:

cat myfile.txt # Displays the content of myfile.txt

cat file1.txt file2.txt # Displays content of file1.txt then file2.txt

cat -n mylog.txt # Displays mylog.txt with line numbers

cat file1.txt file2.txt > combined.txt # Concatenates file1.txt and file2.txt into a new file

called combined.txt.

 # (The '>' symbol redirects output to a file)

cat > new_file.txt # Creates a new file. Type content, then press Ctrl+D to save and

exit.

2. rm (Remove)

• Purpose: The rm command is used to delete files and directories. It's a powerful

command, and caution should be exercised as deleted files are generally not

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 8

TYBCA Sem-5

recoverable from the command line (unless you have a backup or a specific recovery

tool).

• Syntax:

rm [options] file(s) or directory(s)

• Common Options:

o -i or --interactive: Interactive mode. Prompts you before every removal.

Highly recommended for safety, especially when deleting multiple files or

directories.

o -f or --force: Force removal. Ignores non-existent files and never prompts. Use

with extreme caution! This can be dangerous if used incorrectly.

o -r or -R or --recursive: Recursive removal. Deletes directories and their

contents (subdirectories and files). This is necessary for deleting non-empty

directories..

o -d :removes only empty directory

• Examples:

rm myfile.txt # Deletes myfile.txt

rm -i another_file.txt # Prompts before deleting another_file.txt

rm -f unwanted_file.txt # Deletes unwanted_file.txt without prompting

rm -r my_empty_dir # Deletes an empty directory (rmdir is safer for empty ones)

rm -r my_project_folder # Deletes my_project_folder and all its contents (files and

subdirectories)

rm -rvf my_old_project # Forcefully and recursively deletes my_old_project, showing

verbose output

• Warning: Be very careful with rm -rf / or rm -rf * (especially as root or in critical

directories), as these can delete your entire system or important data without warning.

Always double-check your command before pressing Enter.

3. cp (Copy)

• Purpose: The cp command is used to copy files and directories from one location to

another.

• Syntax:

cp [options] source_file destination_file

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 9

TYBCA Sem-5

cp [options] source_file(s) destination_directory

cp [options] source_directory destination_directory

• Key Concepts:

o Source: The file or directory you want to copy.

o Destination: Where you want the copy to go.

▪ If the destination is a file name, the source file is copied and renamed to

the destination file name.

▪ If the destination is an existing directory, the source file(s) are copied

into that directory with their original names.

• Common Options:

o -i or --interactive: Interactive mode. Prompts before overwriting an existing

file.

o -r or -R or --recursive: Recursive copy. Required when copying directories. It

copies the directory and all its contents.

o -v or --verbose: Explains what is being done.

o -u or --update: Copy only when the SOURCE file is newer than the destination

file or when the destination file is missing.

o -a or --archive: Archive mode. Preserves file attributes (permissions,

ownership, timestamps, symbolic links, etc.). This is often preferred for

backups. It's equivalent to -dR --preserve=all.

• Examples:

cp myfile.txt backup/ # Copies myfile.txt into the 'backup' directory

cp myfile.txt new_name.txt # Copies myfile.txt and renames the copy to new_name.txt

cp file1.txt file2.txt docs/ # Copies file1.txt and file2.txt into the 'docs' directory

cp -i report.txt archive/ # Copies report.txt, prompts if 'report.txt' already exists in

'archive'

cp -r my_project_dir backup/ # Copies the entire 'my_project_dir' and its contents to

'backup'

cp -a website/ public_html/ # Copies 'website' and its contents to 'public_html',

preserving attributes.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 10

TYBCA Sem-5

4. mv (Move)

• Purpose: The mv command is used to move files and directories from one location

to another, or to rename them. Unlike cp, mv does not create a new copy; it moves

the original.

• Syntax:

mv [options] source_file destination_file

mv [options] source_file(s) destination_directory

mv [options] source_directory destination_directory

• Key Concepts:

o Renaming: If the source and destination are in the same directory, mv acts as

a rename command.

o Moving: If the source and destination are in different directories, mv moves

the file/directory.

• Common Options:

o -i or --interactive: Interactive mode. Prompts before overwriting an existing

file.

o -f or --force: Force move. Overwrites existing files without prompting.

o -v or --verbose: Explains what is being done.

o -u or --update: Move only when the SOURCE file is newer than the destination

file or when the destination file is missing.

• Examples:

mv old_name.txt new_name.txt # Renames old_name.txt to new_name.txt in the same

directory

mv report.pdf documents/ # Moves report.pdf into the 'documents' directory

mv -i file_to_move.txt existing_file.txt # Prompts before overwriting existing_file.txt

mv -v my_dir /tmp/ # Moves 'my_dir' to '/tmp/', showing verbose output

mv file1.txt file2.txt file3.txt archive/ # Moves multiple files to 'archive'

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 11

TYBCA Sem-5

5. touch

• Purpose: The touch command is primarily used for two main purposes:

o To create new, empty files.

o To update the access and modification timestamps of existing files or

directories without changing their content.

• Syntax:

touch [options] file(s)

• Common Options:

o -a: Change only the access time.

o -m: Change only the modification time.

o -c or --no-create: Do not create any files.

o -r reference_file: Use the access/modification times of reference_file instead of

the current time.

o -t [[CC]YY]MMDDhhmm[.ss]: Use a specified timestamp instead of the

current time.

• Examples:

touch new_empty_file.txt # Creates a new empty file named new_empty_file.txt

touch file1.txt file2.txt # Creates two new empty files

touch existing_file.txt # Updates the access and modification times of existing_file.txt

to the current time

ls -l existing_file.txt # Check timestamps before and after using touch

touch -r template.txt draft.txt # Sets the timestamps of draft.txt to match template.txt

touch -t 202407081030.00 old_document.txt # Sets timestamp of old_document.txt t

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 12

TYBCA Sem-5

2.3 File Permissions and Ownership

Linux is a multi-user operating system, and a robust permission system is essential to control

who can access, modify, and execute files and directories.

Understanding Linux File Permissions

Every file and directory in Linux has associated permissions that dictate what actions

different types of users can perform. These permissions are typically shown when you use

ls -l.

Example ls -l output:

-rw-r--r-- 1 user group 1024 Jul 7 10:30 myfile.txt

drwxr-xr-x 2 user group 4096 Jul 6 15:00 my_folder/

The first block of 10 characters represents the file type and permissions:

1. First Character (File Type):

o -: Regular file

o d: Directory

o l: Symbolic link

o (There are others like c for character devices, b for block devices, etc., but these

are less common for general users).

2. Next Nine Characters (Permissions): These are divided into three sets of three

characters each:

o User (Owner) Permissions: The first three characters.

o Group Permissions: The middle three characters.

o Others (World) Permissions: The last three characters.

Each set has three possible permissions, represented by r, w, x, or - if the permission is

absent:

o r: Read permission

o w: Write permission

o x: Execute permission

Meaning of Permissions:

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 13

TYBCA Sem-5

• For Files:

o r (Read): Allows viewing the content of the file.

o w (Write): Allows modifying (editing, saving, deleting) the file.

o x (Execute): Allows running the file as a program (if it's an executable script

or binary).

• For Directories:

o r (Read): Allows listing the contents of the directory (ls).

o w (Write): Allows creating, deleting, or renaming files within the directory.

o x (Execute): Allows entering/traversing the directory (cd) and accessing its

files and subdirectories. Without 'x' on a directory, you cannot cd into it or

access anything inside, even if you have read permission.

Numeric (Octal) Representation of Permissions:

Each permission (r, w, x) also has a numeric value:

• r = 4

• w = 2

• x = 1

• - = 0

To get the numeric representation for a set of three permissions, you sum their values:

• rwx = 4 + 2 + 1 = 7 (Read, Write, Execute)

• rw- = 4 + 2 + 0 = 6 (Read, Write)

• r-x = 4 + 0 + 1 = 5 (Read, Execute)

• r-- = 4 + 0 + 0 = 4 (Read Only)

• --- = 0 + 0 + 0 = 0 (No Permissions)

So, permissions like rwxr-xr-x can be represented numerically as 755:

• User: rwx = 7

• Group: r-x = 5

• Others: r-x = 5

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 14

TYBCA Sem-5

1. chmod (Change Mode)

• Purpose: The chmod command is used to change file and directory permissions.

• Syntax:

chmod [options] mode file(s) or directory(s)

• Modes: Permissions can be set using two main methods:

1. Symbolic Mode (UGOA): Uses characters to specify who (u, g, o, a), what

operation (+, -, =), and what permission (r, w, x).

▪ u: user (owner)

▪ g: group

▪ o: others

▪ a: all (u + g + o)

▪ +: add permission

▪ -: remove permission

▪ =: set permission exactly (override existing)

2. Numeric (Octal) Mode: Uses the 3-digit (or 4-digit) octal representation of

permissions. This is generally preferred for clarity and consistency.

• Common Options:

o -R or --recursive: Change permissions of files and subdirectories recursively.

o -v or --verbose: Show detailed information for every changed file.

• Examples (Symbolic Mode):

chmod u+x myfile.sh # Add execute permission for the owner

chmod g-w myfile.txt # Remove write permission for the group

chmod o=r myfile.txt # Set read permission for others, remove all others

chmod a+rw my_file.txt # Add read and write for all (user, group, others)

chmod ug+w,o-rwx my_dir # Add write for user/group, remove all for others on

'my_dir'

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 15

TYBCA Sem-5

chmod +x myscript.sh # Adds execute permission for everyone if no target (u,g,o)

is specified

• Examples (Numeric Mode):

chmod 755 myscript.sh # rwxr-xr-x (Owner has read/write/execute, Group/Others have

read/execute)

chmod 644 myfile.txt # rw-r--r-- (Owner has read/write, Group/Others have read only)

chmod 700 private_folder/ # rwx------ (Owner has full access, Group/Others have no

access)

chmod 666 shared_file.txt # rw-rw-rw- (Everyone has read/write) - generally not

recommended for security

chmod -R 775 my_project/ # Recursively set permissions of 'my_project' and its c

2.4 Common System Commands (Short Note)

This section covers basic commands for interacting with the Linux system, checking

information, and managing your terminal.

1. who: Shows who is currently logged into the system, including their username,

terminal, login time, and originating host.

o Example: who

2. whoami: Displays your current effective username (i.e., who you are logged in as).

o Example: whoami

3. man (Manual): Provides detailed online reference manuals (man pages) for Linux

commands, utilities, and other system components. Essential for learning command

options and usage.

o Example: man ls (to view the manual for ls)

4. echo: Prints a line of text or the value of variables to the terminal. Commonly used

for displaying messages in scripts.

o Example: echo "Hello Linux!" or echo $HOME

5. date: Displays the current system date and time. Can also be used to set the date/time

(with root privileges) or format the output.

o Example: date or date "+%Y-%m-%d"

6. clear: Clears the terminal screen, moving all previous output out of view to provide

a clean prompt.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 16

TYBCA Sem-5

o Example: clear (or press Ctrl + L)

2.5 Text Processing Commands

These commands are essential for manipulating, analyzing, and transforming text data,

which is a common task in Linux environments. They often work best when chained

together using pipes (|).

1. head

• Purpose: The head command outputs the first part (beginning) of files to standard

output. By default, it shows the first 10 lines.

• Syntax:

head [options] [file(s)]

• Common Options:

o -n NUM or --lines=NUM: Output the first NUM lines.

o -c NUM or --bytes=NUM: Output the first NUM bytes.

o -q or --quiet: Never print headers giving file names (useful when processing

multiple files).

• Examples:

head myfile.txt # Displays the first 10 lines of myfile.txt

head -n 5 access.log # Displays the first 5 lines of access.log

head -c 200 document.txt # Displays the first 200 bytes of document.txt

head -n 2 file1.txt file2.txt # Displays the first 2 lines of both file1.txt and file2.txt

2. tail

• Purpose: The tail command outputs the last part (end) of files to standard output. By

default, it shows the last 10 lines. It's particularly useful for monitoring log files in

real-time.

• Syntax:

tail [options] [file(s)]

• Common Options:

o -n NUM or --lines=NUM: Output the last NUM lines.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 17

TYBCA Sem-5

o -c NUM or --bytes=NUM: Output the last NUM bytes.

o -f or --follow: Follow mode. Outputs appended data as the file grows (great for

monitoring live log files). Press Ctrl+C to exit.

o -q or --quiet: Never print headers giving file names.

• Examples:

tail mylog.log # Displays the last 10 lines of mylog.log

tail -n 20 error.log # Displays the last 20 lines of error.log

tail -f /var/log/syslog # Monitors the syslog file in real-time

tail -n +100 large_file.txt # Displays content starting from line 100 to the end

3. cut

• Purpose: The cut command extracts sections from each line of a file. It can cut based

on byte position, character position, or field delimiter.

• Syntax:

cut [options] [file(s)]

• Common Options:

o -f n: Select fields (columns) specified in LIST. Fields are typically separated

by a delimiter. LIST can be single numbers (e.g., 1), ranges (e.g., 1-3), or

combinations (e.g., 1,3,5).

o -d (delimiter): Use DELIM instead of the default tab for field separation.

o -c (characters: Select characters at positions specified in LIST.

o -b (bytes): Select bytes at positions specified in LIST.

• Examples: Assume users.txt contains:

• john:x:1001:1001:John Doe:/home/john:/bin/bash

• mary:x:1002:1002:Mary Smith:/home/mary:/bin/sh

cut -d: -f1,5 users.txt # Extracts the first and fifth fields (username and full name),

using ':' as delimiter

 # Output:

 # john:John Doe

 # mary:Mary Smith

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 18

TYBCA Sem-5

cut -c 1-5,10 users.txt # Extracts characters 1-5 and the 10th character of each line

echo "apple orange banana" | cut -d' ' -f2 # Uses pipe, extracts the second word

separated by space

 # Output: orange

4. sort

• Purpose: The sort command sorts lines of text files. It can sort alphabetically,

numerically, by specific fields, and in various orders.

• Syntax:

sort [options] [file(s)]

• Common Options:

o -r: Reverse the result of comparisons.

o -n: Compare according to string numerical value.

o -k Sort via a key. POS1 is the starting field/character, POS2 is the ending

field/character.

o -t: Use SEP as field separator.

o -u or --unique: With -c, check for strict ordering; without -c, output only the

first of a run of identical lines.

o -o OUTPUT_FILE: Write the result to OUTPUT_FILE instead of standard

output.

Examples: Assume names.txt contains:

o Bob

o Alice

o Charlie

o Eve

o David

sort names.txt # Sorts alphabetically (Alice, Bob, Charlie, David, Eve)

sort -r names.txt # Sorts in reverse alphabetical order (Eve, David, ...)

sort -n numbers.txt # Sorts a file of numbers numerically (e.g., 1, 10, 2, 20 would

become 1, 2, 10, 20)

sort -k 2 -t, data.csv # Sorts 'data.csv' based on the second field, using ',' as separator

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 19

TYBCA Sem-5

cat access.log | sort | uniq # Sorts a log file and then removes duplicate lines

5. cmp (Compare)

• Purpose: The cmp command compares two files byte by byte and reports the first

differing byte and line number.

• Syntax:

cmp [options] FILE1 FILE2

• Output:

o If files are identical, cmp returns no output and an exit status of 0.

o If files differ, it reports the byte and line number where the first difference

occurs, and returns a non-zero exit status.

• Common Options:

o -s or --quiet or --silent: Suppress all output. Only return exit status.

o -l or --verbose: Output the byte number and the differing bytes (in octal) for all

differences.

• Examples:

cmp file1.txt file2.txt # Compares file1.txt and file2.txt

cmp -s original.txt copy.txt # Compares silently; useful in scripts to check if files are

identical

6. tr (Translate or Delete Characters)

• Purpose: The tr command translates or deletes characters from standard input and

writes to standard output. It's often used with pipes.

• Syntax:

tr [options] SET1 [SET2]

• Key Concepts:

o SET1: The set of characters to search for.

o SET2: The set of characters to replace them with. If SET2 is shorter than SET1,

SET1 characters at the end are deleted. If SET2 is longer, the extra characters

are ignored.

• Common Options:

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 20

TYBCA Sem-5

o -d or --delete: Delete characters in SET1.

o -s or --squeeze-repeats: Replace each sequence of a repeated character that is

in SET1 with a single occurrence of that character.

• Examples:

echo "hello world" | tr '[:lower:]' '[:upper:]' # Converts lowercase to uppercase

 # Output: HELLO WORLD

echo "HeLlO wOrLd" | tr 'a-z' 'A-Z' # Same as above, using character ranges

echo "remove all spaces" | tr -d ' ' # Deletes all spaces

 # Output: removeallspaces

echo "helloooo worlddd" | tr -s 'o' 'd' # Squeezes repeated 'o's, then translates them

to 'd'

 # Output: helod worldd

cat myfile.txt | tr -d '\r' > myfile_unix.txt # Removes Windows carriage returns ('\r') for

Unix compatibility

7. uniq (Unique)

• Purpose: The uniq command reports or filters out repeated adjacent lines from a

sorted file. It's crucial to understand that uniq only works on consecutive duplicate

lines. Therefore, you almost always sort the file first.

• Syntax:

uniq [options] [input_file] [output_file]

• Common Options:

o -c or --count: Prefix lines by the number of occurrences.

o -d or --repeated: Only print duplicate lines.

o -u or --unique: Only print unique lines (non-repeated lines).

• Examples: Assume data.txt contains (note: line 2 and 3 are identical and

consecutive):

• apple

• banana

• banana

• orange

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 21

TYBCA Sem-5

• apple

• grape

uniq data.txt # Output (apple, banana, orange, apple, grape - it misses the second

'apple')

sort data.txt | uniq # Correct way to get unique lines regardless of position

 # Output:

 # apple

 # banana

 # grape

 # orange

sort data.txt | uniq -c # Counts occurrences of each unique line

 # Output:

 # 2 apple

 # 2 banana

 # 1 grape

 # 1 orange

sort data.txt | uniq -d # Shows only the lines that appeared more than once (only the first

instance)

 # Output:

 # apple

 # banana

8. wc (Word Count)

• Purpose: The wc command prints newline, word, and byte (or character) counts for

each file.

• Syntax:

wc [options] [file(s)]

• Common Options:

o -l or --lines: Print the newline counts only.

o -w or --words: Print the word counts only.

o -c or --bytes: Print the byte counts only.

o -m or --chars: Print the character counts only (takes multi-byte characters into

account).

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 22

TYBCA Sem-5

• Examples:

Bash

wc myfile.txt # Prints lines, words, and bytes for myfile.txt

 # Output: 15 120 800 myfile.txt (15 lines, 120 words, 800 bytes)

wc -l document.log # Prints only the number of lines in document.log

ls -l | wc -l # Counts the number of files/directories in the current directory

echo "Count these words" | wc -w # Counts words from piped input

 # Output: 3

9. tee

• Purpose: The tee command reads from standard input and writes to both standard

output (the screen) and one or more files. It's like a T-junction in a pipeline, allowing

you to see the output while also saving it to a file.

• Syntax:

Bash

tee [options] [file(s)]

• Common Options:

o -a or --append: Append output to the given files, rather than overwriting them.

o -i or --ignore-interrupts: Ignore interrupt signals (like Ctrl+C).

• Examples:

Bash

ls -l | tee file_list.txt # Displays the directory listing on screen AND saves it to file_list.txt

2.6 Introduction to Process

In Linux (and other Unix-like operating systems), a process is an instance of a running

program. When you execute a command or run a script, the kernel creates a new process for

it. Each process has its own unique set of resources and its own distinct environment.

Key Concepts of a Process:

1. Process ID (PID): Every process is assigned a unique positive integer called its

Process ID. This ID is used by the kernel to keep track of and manage the process.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 23

TYBCA Sem-5

2. Parent Process ID (PPID): Most processes are started by another process. The

process that starts another process is called its "parent." The child process will have a

PPID that points to its parent's PID. The first process started by the kernel (usually

systemd or init) has a PID of 1 and no parent.

3. User ID (UID) & Group ID (GID): Every process runs with the permissions of a

specific user and group. These determine what files and resources the process can

access.

4. State: A process can be in various states:

o Running (R): The process is currently executing or ready to execute.

o Sleeping (S): The process is waiting for an event (e.g., I/O to complete, a

signal, a specific time).

o Stopped (T): The process has been suspended, usually by a user (e.g., Ctrl+Z)

or a signal. It can be resumed.

o Zombie (Z): A child process that has terminated but whose entry still exists in

the process table because its parent hasn't yet read its exit status. Zombie

processes consume very little system resources but can indicate a programming

error if they accumulate.

o Defunct (D): Uninterruptible sleep, usually waiting for I/O.

5. Priority: Processes have a priority (or "nice value") that influences how much CPU

time they get relative to other processes. Higher priority means more CPU time.

6. Memory: Each process has its own dedicated memory space, preventing one process

from accidentally corrupting another's memory.

7. Open Files: A process keeps track of all the files it has open for reading, writing, or

execution.

Process Lifecycle (Simplified):

1. Creation (Fork): A new process is created, typically by a parent process calling the

fork() system call. The child process is initially a copy of the parent.

2. Execution (Exec): The child process then calls exec() to load a new program into its

memory space and start executing it.

3. Termination (Exit): A process terminates when it finishes its task, encounters an

error, or receives a signal to stop. It returns an exit status to its parent.

4. Wait: The parent process typically calls wait() to collect the exit status of its child

process. If the parent doesn't wait(), the child becomes a zombie.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 24

TYBCA Sem-5

Foreground vs. Background Processes:

• Foreground Process: A process that is directly interacting with the user via the

terminal. It waits for user input and sends its output directly to the terminal. You

cannot type new commands while a foreground process is running (unless it's waiting

for input).

• Background Process: A process that runs independently of the terminal's input. It

generally does not wait for user input and can be run while you continue to type other

commands. Its output might still appear on the terminal unless redirected.

2.7 Process Control Commands

These commands allow you to view, manage, and terminate processes on your system.

1. ps (Process Status)

• Purpose: The ps command reports a snapshot of the current processes. It displays

information about processes running on your system.

• Syntax:

Bash

ps [options]

• Key Concept: ps shows processes that were running at the moment the command

was executed. For real-time, continuous monitoring, top or htop are better.

• Common Options (often combined):

o a: Display processes of all users on the terminal.

o u: Display user-oriented format (UID, PID, PPID, CPU %, Mem %, Start Time,

TTY, CMD).

o x: Display processes without a controlling TTY (usually daemon processes).

o e: Select all processes (long format).

o f: Full format listing (more details).

o l: Long format listing.

o aux (common combination): Displays all user processes, with

user/CPU/memory usage, and full command.

o -ef (common combination): Displays all processes in full format.

o -p PID: Display information for a specific PID.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 25

TYBCA Sem-5

o --forest: Show process parent/child relationships in a tree format.

• Output Columns (common with ps aux):

o USER: The effective user ID of the process owner.

o PID: Process ID.

o %CPU: CPU usage of the process.

o %MEM: Memory usage of the process.

o VSZ: Virtual memory size in kilobytes.

o RSS: Resident Set Size (physical memory used) in kilobytes.

o TTY: Controlling terminal.

o STAT: Process state (R=running, S=sleeping, T=stopped, Z=zombie,

o START: Start time of the process.

o TIME: Total CPU time used by the process.

o COMMAND: The command that started the process.

• Examples:

Bash

ps # Shows processes associated with your current terminal

ps aux # Shows all processes from all users, with detailed info

ps -ef # Another common way to see all processes with full details

ps -p 1234 # Displays information about process with PID 1234

ps aux | grep firefox # Finds all processes related to Firefox

ps -eo pid,ppid,cmd,%mem,%cpu --sort=-%mem | head -n 10 # Custom output, top 10 by

memory

2. fg (Foreground)

• Purpose: The fg command resumes a job from the background and brings it back to

the foreground, allowing it to interact with the terminal again.

• Syntax:

Bash

fg [job_ID]

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 26

TYBCA Sem-5

• Key Concept: When you start a process and then suspend it using Ctrl+Z, it becomes

a stopped job. fg can bring it back. If there's only one background job, you don't need

to specify job_ID. You can see background jobs using the jobs command.

• Examples:

Bash

1. Start a command that runs indefinitely or takes time

ping google.com

2. Suspend it by pressing Ctrl+Z

Output: [1]+ Stopped ping google.com

3. Check its status

jobs

Output: [1]+ Stopped ping google.com

4. Bring it back to the foreground

fg 1 # Or simply 'fg' if it's the only job

The 'ping' command resumes, and you regain control of the terminal.

• Use Case: Resuming a paused task, bringing a background process to interact with it.

3. bg (Background)

• Purpose: The bg command resumes a suspended job in the background. The job will

continue to run but will not interact with the terminal (unless its output is redirected).

• Syntax:

Bash

bg [job_ID]

• Key Concept: Similar to fg, it works on jobs previously suspended with Ctrl+Z. If

you want to start a process directly in the background, append & to the command

(e.g., command &).

• Examples:

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 27

TYBCA Sem-5

Bash

1. Start a command and suspend it (Ctrl+Z), as in the `fg` example

ping google.com

Press Ctrl+Z

Output: [1]+ Stopped ping google.com

2. Put it in the background

bg 1 # Or simply 'bg' if it's the only job

4. kill

• Purpose: The kill command sends a signal to a process, typically to terminate it.

• Syntax:

Bash

kill [options] PID

kill -SIGNAL PID

kill -SIGNAL %job_ID

• Key Concepts:

o Signals: kill doesn't "kill" in the sense of instant death. It sends a signal to a

process. The process decides how to handle that signal (though some signals

cannot be ignored).

o Common Signals:

▪ TERM (15): The default signal. Requests the process to terminate

gracefully (allows it to clean up). Equivalent to kill PID.

▪ KILL (9): A forceful termination signal. The process cannot ignore this

and is immediately killed. Use this as a last resort if TERM doesn't work.

Equivalent to kill -9 PID.

▪ HUP (1): Hang Up. Often used to tell a daemon process to reload its

configuration files without restarting.

▪ STOP (19): Stop a process (like Ctrl+Z), but doesn't get delivered to the

terminal.

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 28

TYBCA Sem-5

▪ CONT (18): Continue a stopped process.

o You can specify signal names (e.g., KILL) or their numeric values (e.g., 9).

• Examples:

Bash

Find a process ID first (e.g., of a hung program)

ps aux | grep "hung_program"

Output: user 1234 0.5 2.0 ... /usr/bin/hung_program

kill 1234 # Sends SIGTERM (15) to PID 1234 (graceful termination attempt)

kill -9 1234 # Sends SIGKILL (9) to PID 1234 (forceful termination)

kill -HUP 5678 # Sends SIGHUP (1) to PID 5678 (often for config reload)

You can also use job IDs (from the `jobs` command)

jobs

Output: [1]+ Stopped long_running_script.sh

kill %1 # Sends SIGTERM to job 1

• Use Case: Terminating unresponsive programs, gracefully restarting services, or

sending specific signals to processes.

5. sleep

• Purpose: The sleep command pauses execution for a specified amount of time.

• Syntax:

Bash

sleep NUMBER[SUFFIX]

• Key Concepts:

o NUMBER: The duration.

o SUFFIX: Optional.

▪ s: seconds (default if no suffix)

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 29

TYBCA Sem-5

▪ m: minutes

▪ h: hours

▪ d: days

• Examples:

Bash

echo "Starting in 5 seconds..."

sleep 5 # Pauses for 5 seconds

echo "Done!"

sleep 10m # Pauses for 10 minutes

sleep 2h # Pauses for 2 hours

In a script for a retry mechanism:

#!/bin/bash

echo "Attempting connection..."

if ! some_command; then

 echo "Connection failed. Retrying in 10 seconds..."

 sleep 10

 some_command

fi

2.8 Job Scheduling Commands

These commands allow you to schedule tasks to run at a later time, either once or repeatedly.

1. at

• Purpose: The at command schedules commands to be executed once at a specified

time.

• Syntax:

Bash

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 30

TYBCA Sem-5

at [options] TIME

• Key Concepts:

o TIME can be very flexible (e.g., now + 10 minutes, tomorrow 08:00 AM,

14:30, noon, midnight, teatime).

o After typing at TIME, the prompt changes to at>, where you type the

commands you want to execute. Press Ctrl+D on a new line to finish and

schedule the job.

o atq (or at -l): Lists pending at jobs.

o atrm JOB_ID (or at -d JOB_ID): Deletes a pending at job.

• Examples:

Bash

at now + 10 minutes # Schedule a job to run in 10 minutes

> echo "Hello from the future!" > /tmp/future_message.txt

> Ctrl+D

job 5 at 2025-07-08 09:50

at 14:30 tomorrow # Schedule a job for 2:30 PM tomorrow

> /home/user/my_script.sh

> Ctrl+D

At q # List pending 'at' jobs

Output:

5 2025-07-08 09:50 a root

6 2025-07-09 14:30 a root

At rm 5 # Delete job with ID 5

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 31

TYBCA Sem-5

2. batch

• Purpose: The batch command is similar to at but schedules commands to be executed

when the system load average permits. It means the commands will run only when

the system is relatively idle.

• Syntax:

Bash

batch

• Key Concept: It implicitly uses at now, but the execution is delayed until the system's

load average drops below a certain threshold (typically 0.8, but configurable). This is

ideal for non-urgent, resource-intensive tasks.

• Examples:

Bash

batch # Enter commands to be executed when system load is low

> tar -czf /backup/daily_backup.tar.gz /var/www/html

> Ctrl+D

job 7 at 2025-07-08 09:40

The job is scheduled immediately, but won't run until the system is idle.

• Use Case: Running computationally heavy tasks like backups, data processing, or

large compilations without impacting interactive user performance during busy

periods.

3. crontab

• Purpose: The crontab (cron table) command is used to schedule commands to be

executed periodically (repeatedly) at fixed times, dates, or intervals. These are known

as "cron jobs."

• Syntax:

Bash

crontab [options]

• Key Concepts:

501: L inux Oper at ing Syst em Unit 2 : Bas ic L inux Commands

 32

TYBCA Sem-5

o Each user has their own crontab file, which is a plain text file containing cron

job entries.

o The crontab syntax uses five fields to define the schedule, followed by the

command to execute:

o * * * * * command_to_execute

o | | | | |

o | | | | ----- Day of week (0 - 7, Sunday is 0 or 7)

o | | | ------- Month (1 - 12)

o | | --------- Day of month (1 - 31)

o | ----------- Hour (0 - 23)

o ------------- Minute (0 - 59)

o An asterisk (*) means "every" (e.g., * in the minute field means "every

minute").

o Ranges (e.g., 1-5), lists (e.g., 1,3,5), and step values (e.g., */15 for every 15

minutes) are supported.

o Environment: Cron jobs run in a minimal environment. It's often best to use

absolute paths for commands and scripts, and explicitly set environment

variables if needed within the script itself.

o Output: Any output from a cron job (stdout or stderr) is typically emailed to

the user who owns the crontab. You can redirect output to /dev/null if you don't

want emails.

• Common Options:

o -e: Edit the user's crontab file (opens in your default text editor).

o -l: List the user's current crontab entries.

o -r: Remove the user's current crontab file (deletes all cron jobs for that user).

o -v: View the last time crontab was edited.

• Examples:

Bash

crontab -e # Opens your personal crontab for editing

